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ABSTRACT

A scheme of computation is described which will allow the calculation of plane
supersonic gas flow through ducts and around obstacles with an accuracy dependent
mainly on the adequacy of the assumption that viscous and heat conductive effects
may be confined to oblique shocks, these being represented by abrupt changes in flow
variables. The computing scheme will keep track of an arbitrarily large number of
discontinuities and will introduce those shocks, vortex sheets and midflow expansions
which are necessary to represent discontinuity interactions. The methods used are
applicable to the caiculation of weak solutions of other hyperbolic systems.

1. INTRODUCTION

The computation of supersonic gas flows is impeded in many flows of interest
by the presence of regions, known as shocks and vortex sheets, in which flow
variables change very rapidly in an otherwise slowly varying flow field. If a large
number of shocks and vortex sheets are of concurrent interest, a shock smearing
technique requiring several grid points to represent each shock or vortex sheet
will lead to a method having a very large number of grid points. Such methods
have, of course, proved very useful in the study of transonic, shock, and boundary
layer phenomena. Here, however, the emphasis lies in determining quickly and
accurately supersonic gas flows in which shocks and vortex sheets interact as
predicted by the Rankine Hugoniot equations and the isentropic flow relations.
In fulfilling these aims, a general technique which determines weak solutions
of hyperbolic systems in two space variables has been developed.

The weak solutions selected here for the gas flow equations are those which
contain weak oblique shocks. The solutions may also contain vortex sheets and

* Work performed under the auspices of the United States Atomic Energy Commission.
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274 TAYLOR

discontinuities of derivatives of the flow variables on Mach lines and streamlines.
The method given will produce accurate solutions of the selected class in the
region in which the equations are hyperbolic. The utility of the solutions as descrip-
tions of actual gas flow, particularly for marginally supersonic flows, must be
assesed by considering the stability of the boundary layers necessary to sustain the
computed flow and by examining the adequacy of the hypothesis that no Mach
reflections or strong shocks occur.

The numerical techniques which have been employed are well known. The
method of characteristics used by Hartree [1] to determine the solution on a
family of space-like curves requires adaption to allow the fitting of shocks and
vortex sheets into the flow. The method of linearization of nonlinear difference
equations and of iterative solution by successive replacernent which is used by
Hartree is inadequate where the functions vary rapidly and special techniques
have been devised to avoid nonconvergent or very slowly convergent algorithms.
These are discussed in Section 4.

Shock fitting applied to one-dimensional time dependent flows are extensively
discussed by Zhukov [2]. Moe and Troesch [3] have developed a shock fitting
technique for two-dimensional steady flows. These methods operate in the context
of a mesh of characteristic lines and some of the advantages are lost when a more
general grid is used. An alternative scheme is described in Section 4.

The possibility of rotational flow requires that entropy be computed as part
of the solution procedure. Powers {4] has shown how this may be done accurately
using a stream function calculation. His technique is implicit in that used here.

The manipulation and control of intersections of generated discontinuities
constituted the major programming task. The use of the normals to the streamlines
of the flow as a basis for the manipulation is novel. The use of selected Mach lines
to demarcate expansions and compressions and to maintain accuracy in the
neighborhood of focus points is of course derived from the basic method of
characteristics (see [3]). The retention of selected streamlines to maintain accuracy
when the entropy gradient along normals is high is a natural extension of this
approach. These features are combined to yield a method which will represent
accurately, with a minimum of data, functions which are discontinuous and
which may contain discontinuities of derivative or short intervals in which deriva-
tives are relatively high.

The methods developed have been applied to flow in a duct. A specification of
the flow at the inlet or upstream end of the duct provides primary boundary con-
ditions. In order to provide the designer of supersonic intakes and nozzles with
an adaptable computing tool, a variety of secondary boundary conditions have
been implemented. The boundary streamlines—the walls of a duct—may be
specified by their position, by defining the values of some fluid dynamic variable
on them or by requiring that they produce a Mach line focus at a specified point.



STEADY SUPERSONIC GAS FLOW 275

A complete description of the method will appear in Ref. [5] in which the
method is also applied to axisymmetric flows. Its salient features for plane flow
will be given here.

2. THE CHOICE OF SPACE COORDINATES

There are numerous advantages to be gained from use of a coordinate system
based on measures along streamlines and along normals to streamlines. The
boundary conditions are easily implemented and, since the normals are always
spacelike, they are acceptable as a family on which to determine the solution
using the Hartree variant of the method of characteristics. Mach line and shock
manipulations are most readily carried out with this frame of reference and the
need to discard parts of a calculated flow field because of the development of shocks
is eliminated.

The equations to be solved, in characteristic form, are
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where s is distance along a streamline; # is distance along a normal to the stream-
lines; p is pressure; p is density; ¢ is velocity; 0 is the inclination of a streamline
to the x-axis; y is the ratio of specific heats; M is the Mach number, M2 = pg?/yp;
K(n) is a function determining the entropy on different streamlines; x and y are
cartesian coordinates.

The perfect gas law, p = pRT, where R is a gas constant and T the temperature,
should also be considered part of the system. Using this gas law in conjunction
with Eq. (3), Eq. (1) can be integrated to give Bernoulli’s equation,
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where ¢y is the specific heat at constant pressure and 7T, is the stagnation tempera-
ture. In the procedure developed, (1) is solved numerically and (5) used to check
the accuracy of the evaluation. This gives a measure of the accumulation of
numerical error.

The distances s and n are inconvenient measures with which to define stream-
lines and normals to streamlines. The stream function defined by

o o
=P =0 (6)
is constant on each streamline and may be used in place of #. In irrotational flow,
a velocity potential ¢ satisfying
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remains constant on normals. In rotational flow a suitable ¢ can be found if there
exists a function Q(s, n) such that
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in which case ¢ is defined by

¢ ¢
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It is now necessary to solve the differential Eq. (8) along with Eq. (1) and (2).
Using these, (8) may be written as a compatibility condition along the normal.

Q.. 9 _
on T pgion = O (10)

When computing the solution on a normal, the value of Q at the point D of
definition of the normal must be chosen. A value which makes Q a continuous
function is desirable; Q is defined to be ag on a streamline through D. The value
of Q at the point of intersection of this streamline with a previously determined
normal may be used to determine o.

If Q is continuous through vortex sheets and proportional to g through shocks
then normals transform into lines ¢ = constant and the transformation is con-
tinuous.
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3. EXCEPTIONAL LINES AND THE SELECTION OF NORMALS

Several types of discontinuities are of interest; discontinuities of derivatives on
Mach lines and streamlines, shocks, and vortex sheets. It has also proved useful to
keep track of certain Mach lines and streamlines across which no discontinuities
occur. These will be referred to as informational lines. They are used to locate the
points of formation of shocks in compression waves, to provide visual information
in flow maps, and to preserve the accuracy of the computation. Informational
Mach lines, sufficient in number to avoid a turning of the flow of magnitude
greater than a specified 46,, between consecutive Mach lines of the same family,
are introduced on the boundary streamlines and in point expansions. An informa-
tional streamline appears downstream of the intersection of an informational Mach
line and a shock. The number of such streamlines is controlled by retaining one if
the entropy change between it and another retained streamline exceeds a specified
fraction of the total local entropy. All discontinuities and informational lines will
be referred to as exceptional lines.

The intersections of exceptional Mach lines and streamlines—characteristics
of the system of equations—present no difficulties beyond their location. No new
discontinuities are generated at the points of intersection. When one shock or
vortex sheet is involved, an intersecting discontinuity of derivative will be reflected
and refracted. That is, a derivative discontinuity will appear on each streamline
and/or Mach line or lines leaving the point of intersection. An exceptional line
must be introduced. When two shocks or a shock and a vortex sheet intersect, one
of the configurations (a), (b), or (c) in Fig. 1 may arise. The insertion of the neces-
sary exceptional lines to represent the shocks and expansion waves is discussed
further in Section 6 in a more general context which includes the possibility of
multiple intersections and in which the case (d) in Fig. 1 may arise.

VORTEX SHEET
VORTEX SHEET
VORTEX SHEET

Fig. 1. Flows downstream of an intersection.
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If flow variables are given at the limiting points L and R, identified in Fig. 1.
the existence or nonexistence of a supersonic downstream solution must be deter-
mined and any solution found. Briefly, if 8§ = @¢(p) is the inclination of flow,
with pressure p, obtainable from flow at R, then @y is derived from the Rankine-
Hugonijot equations when pz > p > pr and from the isentropic flow relations
when p < pg . pg is the specified pressure at R and pg the maximum pressure
obtainable by an oblique shock. A formal inverse function, p = Px(f), can be
evaluated by Newton-Raphson iteration. Functions ®;(p) and P, (f) can be
similarly defined. No supersonic solution exists if

O1(pr) > Or(Pr)

or

P (Or($R)) > Pr

or
Pr@(pr)) > P

The solution, when it exists, can be found using “‘the rule of false position,” (see
[5]), applied to F(p) = Oy (p) — Or(p) = 0. This gives the algorithm

Pl = (pOF(p™) — pm F( pOY)/(F(p™) — F(p'®)). (11)

The values min(py , pr) and min( p;, pr) for p® and p'V insure linear convergence.
When changes in p'™ for successive n are sufficiently small, the iteration is termi-
nated and the associated value of 6 obtained using 6 = @x(p) or 6 = O (p).
The obtained values of p and 8, (p*, 6%), appear on the vortex sheets in Fig. 1.
The relationship of p* to p, and py indicates whether shocks or expansion waves
are needed.

Considerable data manipulation may be necessary at intersections and it is not
feasible to use a grid of equally spaced normals. In the procedure adopted a
normal is generated through every intersection of exceptional lines and through
every point on the boundary streamlines at which exceptional lines begin, that is
at points of discontinuity and at selected points at which informational Mach
lines are introduced.

The normals are constructed one at a time beginning at the inlet or upstream
end of the duct and proceeding downstream. It may be that the normals selected
by the criteria given above do not allow numerical integration of sufficient accuracy.
In this case other normals are introduced. 4 step in ¢, Ay, , is defined as a function
of a control parameter 8 and of the Mach numbers on the last known normal,
¢ = ¢;. If no intersection of exceptional lines occurs in the interval (¢;, ¢; + ddar)
then the normal ¢ = ¢; + Ay, is generated. The parameter B is also used to
determine the number of points at which the solution is found on each normal.
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4, NUMERICAL TECHNIQUES

If the Hartree [1] method is used to solve equations (1), (2), (3), and (10) with
trapezoidal integration along characteristic segments and quadratic interpolation
on normals then, if the third derivatives of the initial data are bounded, the numer-
ical algorithms have error terms O(4%) where 4 is a measure of the distance
between selected normals and between points on those normals and E(4) = 0(4%)
means that there exist N and 4* such that £ < N42for all 4 << 4*. Convergence
of the method with error O(4?) can be demonstrated by a modification of the
methods used by Stetter [6] to study convergence of high accuracy algorithms on a
mesh of two characteristics. The result is analogous to that of Courant, Isaacson
and Rees [7] and holds when the Courant-Friedrichs-Lewy condition is satisfied.
This condition, interpreted in the context of unequally spaced points on unequally
spaced normals, is satisfied if every quadratic interpolation to determine values
at a point X is based on a triad which spans X, that is, if no extrapolation occurs.
A region of numerical dependence will then always span the corresponding region
of analytic dependence. Further details appear in [5].

The algorithms used will be summarized. If an approximation U to the
solution vector u = (g, p, 0, Q) is known at points on ¢ == ¢, and at W on
¢ = ¢py = ¢, + A, then U may be found at a point P on ¢ = ¢, by integra-
tion from W to P on ¢ = ¢,,, and from ¢ = ¢, to ¢ = ¢, along the Mach
lines and streamline through P. Figure 2 identifies the points P, W, L, C, and R.

¢
p W D=Pnes

@=@n

C R

Fic. 2. The orientation of named points.

P is chosen so that $p — bw = O(4). The trapezoidal numerical integrals of (1)
and (2) take the form

[pg)e + (pg)cl(gp — gc) + 2(pp — pc) = O(43) (12)

+ [(pg™p + (qu)it](er - 9{{) + [(M?— 1)3* + (M® — 1):1}/2](1% - PE) = 0(4?.
(13)
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Values at L, C, and R are obtained by quadratic interpolation on values at known
parts on ¢ = ¢, . If these points are specified by their ¢ coordinates, the values
of 4 at L, C, and R are required; ¢c = p , and

A4¢,
‘/’Il_l = ¢p F [gp + gll_(] ‘-;i‘ + 0(4® (14)
where
Pq
8p = (W)P , etc.,
and

0= [oue = Lo+ L) "own

The solution of Egs. (12)-(15) may be derived iteratively. Initial values for the
coefficients in square brackets in Eqgs. (12)-(14) are necessary. Values for these
terms at the point on ¢ = ¢, nearest to Y are suitable. Values of ¢; and ¢y are
then obtainable from (14) and values of g¢ , pc , Or » 0L, Pr , pL can be obtained
by interpolation. Solution of the now linear equations (12) and (13) yields an initial
approximation Uy, to the extended solution vector up = (gp, pp, 0p, Qp , Y » 1)

An iterative solution of (14) was adopted rather than a direct solution of a

quadratic equation for ¢y . The computational simplicity of the direct solution

is lost when R or L lies not on a normal but on a curved exceptional line (see
Section 6).

Two approaches are now possible. The approximation UY’ may be used to
approximate the square brackets in both (12), (13), and (14) and then UY™ may
be obtained by solution of the linearized equations. Alternately, a two-stage
method may be used in which the most recently obtained values are used in the
coefficients, that is Ui’ is used to approximate the square brackets in (12) and (13)
and g5, pirtY, QU+ obtained when Eqs. (12) and (13) are solved, are used in
(14). The convergence of both approaches for sufficiently small d¢, may be
established by methods analogous to those used by Stetter [6].

The restriction of 4¢, for both approaches is most significant immediately
downstream of point expansions and immediately upstream of shock formation
points in compression waves. The difficulty can be reduced by using a weighted
combination of the two iterative schemes, the weights being dependent on the
local derivatives of the Mach-line gradient. Details appear in [5].

The computation on exceptional Mach lines and streamlines can be achieved
by a simple modification of the basic method. The value of ¢y , e, or g becomes
a known quantity and ip must be determined. Vortex sheets present no difficulties.
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Equation (12) is available on both sides of the discontinuity of g and p and the
appropriate values must be used in the two forms of (13). The fitting of a shock is
achieved by estimating i using an approximation to the angle of the shock. The
flow upstream of the shock is then obtainable by the basic procedure described.
A downstream flow with pressure p;, and inclination 6, is defined by the shock
angle approximation using the Rankine-Hugoniot equations. Application of the
appropriate version of (13) downstream of the shock will yield a second downstream
flow at P with inclination 8, but with a new pressure, p, . The value 3(p, -+ p,) is
taken as the corrected downstream pressure at P and a new shock angle and hence
gradient in (¢, y)-space is obtained using the Rankine-Hugoniot equations.

Two methods of defining boundary streamlines have been implemented. The
first allows specification by a sequence of pairs (% , sp) where Fy_is the value of
a variable ¢, 0, p, M, or p at the point B; with distance S, along the streamline
from the inlet of the duct. At a boundary point P only one compatibility relation
on a Mach line is available. The relation required to complete definition of the
solution at P is obtained by computing % using quadratic interpolation on the
boundary data at three consecutive points i = j, j + 1, j 4 2 chosen so that
sp, < Sp < 5p,,, - As the iteration to determine the solution at P proceeds, succes-
sive approximates to sp are obtained using trapezoidal quadrature of Eq. (9)
along the boundary streamline segment between ¢ = ¢, and ¢ = ¢, .

The second method of defining the boundary streamlines specifies a focus point
(X, Y) toward which or from which the boundary must direct reflected Mach lines.
Geometrical considerations lead to a differential equation along such a boundary
streamline.

1 _ yRTM* &g | 0
M — 7 + (V= /17— gt — yas 280 = Oy

(16)

where 7 is the angle between the join of (X, Y) and (x, y) and the x-axis. A relation
obtained by trapezoidal quadrature of this equation has been used successfully in
place of the interpolation used in the first method.

5. INTERPOLATION ON EXCEPTIONAL LINES

In the presence of discontinuities the iterative correction procedure described
in Section 4 is inadequate. The Mach lines or streamlines through P may intersect
an exceptional line between P and ¢ = ¢, . Values at this point of intersection
must be found either by reapplication of the iterative procedure or by quadratic
interpolation on the exceptional line. The latter course has been adopted as more
feasible in regions containing a large number of exceptional lines. Figure 3 shows
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the points A, H, and B which are used to give values at L which lies on an excep-
tional line. The use of the point H on ¢ = ¢,.1,, = ¢, + 14, is preferable to the
use of the intersection of the exceptional line with ¢ = ¢,_; . This point may not
exist, and even if it does, a gross disparity of 4¢,_, and 44, may lead to very poor
interpolation. Values at L are obtained by interpolation with respect to ¢, and ¢,

\B P w ¢=¢)n+|

@=¢n

A\ C R

Fic. 3. Interpolation of an exceptional line.

must be determined taking into account the curvature of the exceptional line, that
is by solving

o — P+ $ge + gLl bny — ) =0 a7
Ya — P — 3 fu + fil(Pnre — ¢) = 0

where fis the gradient of the exceptional line. Since g and f; are functions of ¢,
the root nearest to ¢,.,,, of acubicequation is needed. It is readily obtained by
repeated approximation of the square brackets in (17), that is, using the iteration

2he — ) + (2o + &) bus + it + F1) Prsann
(gp + &2 + fo + i) ’

¢£s+1) —

(18)

with f{¥ = fyand g{¥ = gy . Similar formulas may be derived for the intersection
of a streamline and Mach line of positive gradient with an exceptional line. The
iteration (18) may proceed concurrently with that which determines Up .

Points on ¢ = ¢,,,,, and exceptional lines cannot unfortunately be located
unless the whole of the normal ¢ = ¢, is found. It is convenient to determine
¢ = ¢,.,1,2 at points having the same ordering and significance as the points used
to determine ¢ = ¢,., . The point storage on the normals is illustrated in Fig. 4.
Each part of the strip between ¢ = ¢, and ¢ = ¢,,, which lies between two
exceptional lines will be referred to as a block. Points at which the solution is
determined on the new normals are marked X. Interior exceptional lines are
represented by pairs of points. In each block, interior points are assigned on the
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basis of a first approximation to the block length and the same number of interior
points, equally spaced in ¢, are introduced on both ¢ = ¢,y and ¢ =¢,,; .

A%Y * N X

A

BLOCK4\\ BLOCK 3 BLOCK 2 // BLOCK |
AN 77

Fic. 4. Division of the calculation into Block calculations.

It must bz noted that interpolation on the exceptional lines introduces a depend-
ence of the solution which is foreign to the differential equations being solved.
This makes it necessary to correct values at all points on the new normals ‘together’.
If the point X in Fig. 4 defines 4¢, then construction and correction of the position
and values on the normals must proceed to the left. If the exceptional line between
blocks 1 and 2 is a Mach line then values in block 1 can be determined inde-
pendently of the solution in other blocks but this is not true of blocks 2, 3, and 4
for which the dividing discontinuities lie respectively on a streamline and on a
left-traveling Mach line or shock. The possibility of the solution at a point P
depending on the solution at a point on the same normal further from X than P
requires that point value corrections in each group of interdependent points be
repeated sequentially, beginning with that point of the group nearest to X, until a
repetition occurs in which at no point of the group are values significantly changed.
The next group of interdependent points may then be considered. Pains must be
taken to recognize the length of the groups so that excessive repetition of the point
correction procedure is avoided.

N Py P=Pnu v P D=Pnei

P, ¢=¢"+'E Py ¢=¢n+-'2-
\< \
. @=@n $=¢n
(a) (b)

Fig. 5. Interpolation in (a) the initial and (b) the final stages of the iterative determination
of the solution.
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The use of the normal ¢ = ¢,,4,, allows a development of the technique which
makes the effective maximum ¢ step 34¢,, . If A, > 1A, then the calculation
so far described and now represented for a block in Fig. 5(a) may be followed by
the correction procedure represented in Fig. 5(b). The new correction uses inter-
polation on ¢ = ¢,,;,, when applied to points on ¢ = ¢,,,. The points on
¢ = ¢u11,o must of course be further corrected because of their dependence on
values at the intersections of ¢ = ¢,,, with exceptional lines.

The nearest intersection of exceptional lines downstream of ¢ = ¢, may not be
found on the basis of a first order estimate and as the procedure progresses the
need for informational Mach lines may be observed. Thus, the iterative procedure
which determines values on the new normals must accomodate changes in the
nature and point of definition of the normal ¢ = ¢, .

6. DATA MANIPULATION

Discontinuities in the system described multiply very rapidly. To obtain an
efficient procedure it is desirable to control the recognition of a discrete disconti-
nuity. For example two vortex sheets which are sufficiently close together in some
sense may be more quickly dealt with as a single vortex sheet. When an intersection
of discontinuities occurs new discontinuities may be needed and these may remove
the need to retain informational lines already in use. A systematic procedure is
needed to represent the solution with the minimum number of exceptional lines
necessary to provide required accuracy. A procedure has been written which
attempts to do this.

As a first step all shocks and vortex sheets are examined and if they are sufficiently
weak their status is lowered. They are treated as discontinuities of derivatives.
Numerically obtained approximations to the values of derivatives of p, g, and 6
are now compared on either side of each discontinuity of derivative. When the
values differ by a quantity which could arise from the indeterminacy of the solution,
the derivative discontinuities are ignored and the exceptional line involved becomes
an informational line. The computation of the derivatives is carried out on the
“half-way” normals ¢ = ¢,,4,s , etc., and, since no intersections occur on these,
derivative estimates can always be made.

The second step involves removal and insertion of blocks and this is facilitated
by generating lists of the blocks used in the solution and of available block names.
Used and available points are similarly listed. The used-block list allows the block
to the left or to the right of a given block to be found. The essential feature of the
second step is the replacement of groups of blocks of short y-length by a minimal
group bounded by divergent exceptional lines. If in a group of adjacent blocks
each has y-length less than some chosen € and if the most remote points of the
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group are less than 2e distant then, if an intersection occurs between the exceptional
lines which bound the blocks of the group, the group is replaced by one of the
systems shown in Fig. 1, or by a simplification of one of these in which shock,
vortex sheet or expansion wave is reduced in status to a derivative discontinuity,
exceptional line, or simply omitted. The operation will deal with multiple inter-
sections and will limit the density of intersections.

In the third step of the procedure any information lines which have been made
superfluous by the presence of new discontinuities of derivative are removed. The
fourth and final stage involves a search for steepening compression waves and the
introduction of extra informational Mach lines to help locate incipient shocks.

7. SoME TEST CASES AND EXAMPLES

The details of three calculations which demonstrate the accuracy of the method
and of two calculations which demonstrate its diversity of application will be given.
The computations were carried out on a Control Data 3600 computer and the flow
maps appearing were produced on-line using a Data Display 80 film recorder.

The flow maps in Figs. 6-10 correspond to the five calculations to be described.
In each map supersonic gas enters from the left. The maps are bounded at the top
and bottom by boundary streamlines. Every second normal, the downstream
member of every pair of calculated normals, is drawn and every exceptional line
line is drawn. Shocks may be recognized visually by the bending of the normals
which they cross.

Test 1. Flow through a Focused Compression Wave
This calculation tests several features of the program:

(a) the approximation of simple waves;

(b) the generation of a focusing surface using the method described at the
end of Section §;

(c) The positioning and simplification of a Mach-line focus.

The data given to the procedure appear in Table I which is included to exhibit
some of the options available in the written program. The pressure, Py , given on
the inside boundary (see Table I) has been chosen to give a continuous transition
from the wave to uniform flow beyond. Calculated values on informational Mach
lines in the wave vary by less than 0.02 % and values at the downstream side of the
wave are obtained with accuracy of 0.03 9. The focus is located with errors of
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0.1 % in its coordinates. The computation required three minutes on the computer.

This test is one of many which have been made using similar boundary conditions
with different choices of Pp . If Pp is chosen to give a very weak shock then this

TABLE [

No. Input Card Content

1 PLANE SUPERSONIC FLOW IN A DUCT. D. B. TAYLOR.

CASE NUMBER 1
2 BEGIN FROM UNIFORM FLOW.
3 THE STAGNATION TEMPERATURE OF THE GAS, TO, IS 1452.4
4 THE RATIO OF SPECIFIC HEATS OF THE GAS, G, IS 1.4
5
6

THE UNIVERSAL GAS CONSTANT, GC, IS 1718.0
THE INITIAL FLOW HAS MACH NUMBER 3.0 AND
THE DENSITY 0.002378
7 INSIDE DATA IN 2 BLOCKS BEGINNING AT X = 0.0, Y = 0.0
8 BLOCK 1 VALUES GIVEN AT 3 POINTS.
9 A DOWNSTREAM MACH-LINE FOCUS IS REQUIRED.
10 22.6274 AND 8.0 ARE THE X AND Y COORDINATES OF THE FOCAL POINT.

11 0.0 AND 20.0 ARE S AT THE START AND END OF THE BLOCK.
12 BLOCK 2 VALUES GIVEN AT 2 POINTS.

13 S PRESSURE

14 20.0 11454.4

15 40.0 11454.4

16 OUTSIDE DATA IN 1 BLOCK BEGINNING AT X = 0.0, Y = 16.0
17 BLOCK 1 VALUES GIVEN AT 2 POINTS.

18 S THETA
19 0.0 0.0
20 40.0 0.0

21 INTRODUCE AN INFORMATIONAL STREAMLINE AFTER EVERY 3.0P.C.
CHANGE IN ENTROPY.

22 INTRODUCE INFORMATIONAL MACH-LINES EVERY 2.0 DEGREES
OF TURNING.

23 THE MINIMUM NUMBER OF SUBINTERVALS ON ANY NORMAL IS 10.
24 THE BASIC CONVERGENCE CRITERION PARAMETER IS 0.001

25 RETAIN THE RESULTS FOR DISPLAY.

26 TERMINATE THE CALCULATION ON THE NORMAL THROUGH

THE POINT X = 450, Y = 15.0

27 DISPLAY WITH 6 UNITS OF LENGTH 2.0 PER FRAME.

28 PROVIDE DETAILED PRINTOUT AFTER NORMAL 1000.

must be located in the region of high derivatives which precedes the focus. The
program has been written to achieve this by carefully measured underrelaxation
in the iteration which determines the shock angle.
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Test 2. Flow between Wedges

This tests the ability of the procedure to correctly manipulate shocks and their
intersections. The test, one of several tests made, shows Mach-2 flow with y = 1.4
between a 4° and an 8° wedge. The solution in this case is achieved throughout
with errors of less than 0.1 %. The only errors arising from the solution of a
differential equation originate in the weak expansion which is generated at the
second intersection of discontinuities. Less than one minute of computation was
required.

N

Fic. 7. Mach-2 flow between wedges, (y = 1.4).

Test 3. Expansion into a Region of Reduced Pressure

This tests the introduction of expansions on boundaries and the implementation
of the interaction of discontinuities with boundaries defined by pressure distribu-

581/3/2-9
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tions. The data used specifies a flow with M = 1.3, y = 1.4, entering a duct with
6 = 0 on one side and a constant value of pressure (0.767 of inlet pressure) on the
other. Figure 8 shows a symmetric flow derived by reflection and addition from the
calculated flow. The solution is almost periodic. The calculation did insert a shock
and vortex sheet very close to the boundary at the focus points of the compression
waves. The vortex sheets are just detectable in the figure by a thickening of the
boundary streamlines downstream of the focus points. The computation required
five minutes to give a solution which, by comparison with other tests, has errors of

the order of 0.5 %,.

Fig. 8. Expansion into a region of reduced pressure (Mo = 1.3, y = 1.4, pp/pe = 0.767).

Test 4. Formation of a Shock from a Simple Wave

The map shown in Fig. 9 shows Mach-3 flow incident on a wall composed of two
circular arcs, the first concave and the second convex. The first arc has twice the
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Fi1G. 9. Formation of a shock from a simple wave, (Mo = 3, y = 1.4).

radius of curvature of the second. The first arc turns the flow through +20° and
the second, through —20°. Comparison with other tests using different step sizes
indicates that errors are of the order of 1 9. The computation required 15 minutes.
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Test 5. Flow around an Aerofoil

Figure 10 shows flow around an aerofoil defined by two circular arcs, both
concave downwards, the upper arc turning the flow from 10° through 0° to —10°
and the lower turning the flow from 5° through 0° to —5°. The problem was
attacked as three duct problems:

(a) flow between the upper arc and a distant upper wall;
(b) flow between the lower arc and a distant lower wall;

(c) flow beyond the aerofoil, between distant walls.

The computations (a) and (b) provided data for (c). The three computations took
15 minutes in all.
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Fic. 10. Flow around an aerofoil (Mw = 2, y = 1.4).
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8. CONCLUSIONS

The methods developed give, at the cost of considerable programming com-
plexity, highly accurate solutions, very rapidly—often more quickly than methods
relying on artificial viscosity, see [8], for which Test 2 would not be an almost
trivial calculation as it is here. A more detailed comparison with artificial viscosity
methods would be interesting,

The author has recently completed the testing of a version of the procedure
which will compute axially symmetric steady flows. The generalization of techni-
ques using a discrete representation of discontinuities to three-dimensional and
time dependent systems, while intriguing, represents a Herculean programming
task which perforce subordinates this approach to methods employing artificial
viscosity.
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